Area-to-point Kriging with inequality-type data
نویسندگان
چکیده
منابع مشابه
Area-to-point Kriging with inequality-type data
In practical applications of area-to-point spatial interpolation, inequality constraints, such as non-negativity, or more general constraints on the maximum and/or minimum allowable value of the resulting predictions, should be taken into account. The geostatistical framework proposed in this paper deals with area-to-point interpolation problems under such constraints, while: (i) explicitly acc...
متن کاملDownscaling MODIS images with area-to-point regression kriging
a Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong b Faculty of Science and Technology, Engineering Building, Lancaster University, Lancaster LA1 4YR, UK c Faculty of Geosciences, University of Utrecht, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands d School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, BT7...
متن کاملBayesian area-to-point kriging using expert knowledge as informative priors
Spatial disagregation is needed when environmental models of climate, air quality, hydrology, etc. require input data at a finer scale than available or when models produce outputs at a coarser scale than required by users. Area-to-Point Kriging is a common geostatistical framework to address the problem of spatial disaggregation from block to point support. Spatial disaggregation using Area-to...
متن کاملPopulation-density estimation using regression and area-to-point residual kriging
International Journal of Geographical Information Science Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713599799 Population-density estimation using regression and area-to-point residual kriging X. H. Liu a; P. C. Kyriakidis b; M. F. Goodchild b a Department of Geography & Human Environmental Studies, San F...
متن کاملmodeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geographical Systems
سال: 2006
ISSN: 1435-5930,1435-5949
DOI: 10.1007/s10109-006-0036-7